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ABSTRACT: We examinehe robustness of a suite of regional climate models (RCMs) in simulating
meteorological droughts and associated metrics in presgntclimate (19742003) over the
conterminaus United StatédS). TheRCMs that are part of North American Regional Climate @ban
Assessment RProgram (NARCCAP) simulations are compared with multiple atisesv over the
climatologically -nhomogeneous regions of thks. The seasonal precipitation, climatology, drought
attributes andstrends have been assesddtk reanalysis based riitmodel median RCM reasonably
simulates.observed statistical attributes of drought and the regional detail dymogoaphic forcing.
Howevenpmodelsfail to simulate significant drying trend ovéne Southwest and WesEurther, re-
analysis based NARCCAP runs underestintia¢mbserved drought frequency overall, with the exception
of the Southwest; whereas they underestimate persistence in the diffagied arem over the
Southwest#and Westorth Central regionsHowever GCM driven NARCCAP ensembledend to
overestimate regional drought frequirsc Modek exhibitconsiderable uncertainties whileproducing
meteorological drought statisticas evidenced by general lack of agreement in the Hurst exponent,
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which in turn controls drouglgersistencéWVater resources managers need to be aware of the limitations
of current climate models, while regional climate modelers may want teauireetheir parameters to

address impaetelevant metrics.

(KEY TERMS:. Drought; sustainability; precipitan; stochastic models; geospatial analysis; time series

analysis)

INTRODUCTION
The impacts of climate change on drought attributes continue to be debated in the scientific
community, even as multiple regions, globally and in the United States, exper@rare s
droughts.Drought is a recurrent problem in many parts of the Contermirdnited States
(CONUS). Heat waves and droughts alone caused damage of around $210.1 billion dollars
during 19802011 in the United States and ranked second highest after tropical cyclones in terms
of financial losseg{Smith and Katz, 2013)Droughts are difficult to characterize because of
complex interdependence among various drought attributes, such as severity (magnitude),
duration, ‘spatialcoverage, frequency and persistente a design context, assumption of
complete.independence or dependence among drought asinbayelead to overor under
estimation.efreservoir sizingalvadori and De Michele, 2004; Salvadeiral, 2013) Similarly,
the longrange persistence or the Hurst phenomg@tarst, 1951), is one of the fundamental
attributes 'of drought. An example of Hurst phenomenbédsersistent drought condition time
Southwestof,the CONUS (Stine, 1994; Woodhoeseal, 2010) Understanding temporal
scaling and._londerm persistence within hydrologic variables is importanttif@ design of
water infrastructures. The uncertaintytire corventional statistical analysis may considerably
increase due to the presence of lbeign persistence in hydrologic time ser{&®utsoyiannis
and Montanari, 2007Not consideringpersistence in the time series may lead to underestimation
in return period, resulting in anappropriate reservoir desigBouglaset al, 2002).

Precipitation. simulations from Global Climate ModeBGMs) arederived variables and hence
less robust than GCM simulated state varia{dash as temperature) and often fail to adequately
capture importanstatisticalcharacteristics, such as persistence (Johnson et al., 2011; Rocheta et

al., 2014). Moreover, Horder to make reliable decis®randensureregional resiliene in
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response to future climate change, water resources managers and planners adanatese
projections at fine scale resolution. The latest generg@aupled Modeling Intercomparison
Projectphase 5, or “CMIP5"15CMs rurs at a spatial resolution of 05300 km and are unable to
resolve fine scale featuresuch as clouds and topography explicitikssessments of
environmental, impactgypically require information at higher resolutions, for exampks,
resolutions, 060 km orhigher. A perspectivarticle (Bonnin,2013) from the National Weather
Servicethe“organization which develops precipitation frequency aflathe United States,
mentions that'insights from climate science “do not discuss frequencies and durations required
for civil infrastructures”. High resolution climate information is essential in impact assessment in
hydrology {such a$or the construction ofintensityDuration-Frequencycurves ofprecipitation
extremes[Aron~ et al, 1987; Yarnell, 1935], and&everityDurationfrequencycurves for
drought[Dalezieset al, 2000; Halw#ura et al, 2014]) and agriculture (simulation of crop
yield models, Qlesenet al, 2007; Xionget al, 2007]) Thus, to capture fine scale regional
information_at stakeholder(e.g., water resources managers and planners) relevants,scale
different dewnscaling, such as statisti¢Benestad, 20049r dynamical (Giorgi and Mearns,

1991) methods have been developed.

Dynamicaldownscaling is based on regional climate models (BCMhere all vertical levels of
the atmospherancluding the surfacéevel aretaken into account aneklatively (compared to
GCMs)fine scale hydrometeorological procesaes simulatedLeung et al., 2004)n addition,
due to enhanced resolution they are expected to provide added value in the frequencyadistributi
of local weather anomalies, such as extreme daiggipitation(Laprise, 2008)On the other
hand,statistical downscaling methods are based on finding statistical relationships baseten
of predictors and predictan@eVilby et al, 1998;Jeonget al, 2013. Dynamically downscaled
variables responth physically consistent ways to external forcing (e.g., {aumdace changes)
andare thereforeassumed to be less susceptible to-stationarity(or fundamental changes in
regional climate patterns owing to radiative forcing under global warmiSgistically
downscaled+ variableare thoughtto be primarily a result of synoptic forcing and carefully
selected largscale climate parametef@ilby et al, 2004; Jeongt al, 2013, which might not
guarantee physical consistenayder norstationarity(Hayhoeet al, 2008 Tormaet al, 2015.
For Northeast US, Hayhaa al.(2008) reports superigrerformance of dynamically downscaled
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regional climate models as compared to statityicdbwnscaleddaily precipitation extremes
especially along the coadlowever,the value added by the RCMs, while not questioned for
hypothesis testinghave beendebatedfor downscaling(Kerr, 2013; Racherlaet al, 2012)
Uncertainties in RCMs can result fronparameterizations and resolutions, initial and lateral
boundary cenditions of thdriving GCMs, and intemodel variability, all ofwhich constrains
their accuracy(Foley, 2010) RCMs are computationally demanding, i.e., thesed more
computer“time“to reproduce equivaleshfnamical scenarios as compared to the statistical
downscaling:-“he issue igurtherexacerbated by the combinatorics, since running an exhaustive
set of GCMRCM combinationss a substantialcomputational challengevhile an arbitrary sub
selection undestimates the variabilityThe suite of dynamically downscaled climate models
that are part of North American Regional Climate Change Assessment PridgA&RTCAP)
computes aselectedsubset of all possible combinations.comparative analysisf statistical
versus dynamichl downscaled daily precipitation suggests both methods exduh#iderable
uncertainty, to_regional climate simulations, especially in simulating summer precipitation
(Schmidliet-als2007).

To date very few studies have attemptece\valuatethe credibility of RCMs in the context of
meteorological droughbt(e.g.,Gaoet al, 2012) althoughthere is considerable prior literature on
climate extremegBukovsky, 2012; Di Lucat al, 2012; Mishreet al, 2012; Singfet al, 2013;
Wehner 2013) Jeong et al. (2014) compared future projected changes of meteorological drought
duration apdseverity based thre SPI and SPEI and showed the role of temperature in the future
drought changes-However,comparisons do exisof observed droughtwith NARR (North
American/Regional Reanalysis; Karnauskaal, 2008; Mo and Chelliah, 2006; Sheffiedtal,

2012; Weaveet.al, 2009)and the land surface models (LSMs)q(.,the Noah model; Chen et

al., 1997 and.the Variable Infiltration Capacity, VIC; Liang et al., 1994). NARR is based on
reanalysis, which does not offer information about future climate condifi¢tresprior studies
havemostlyusedthe Palmer Drought Severity Index (PDSI) the drought index, whichn turn

is based onwater balancelculationsThere hae been concerns that tR®SI lacks multiscale
features and hence mapt capture droughts on time scales less than about twelve months (Dai,
2014), thus being unsuitable br capturing seasonal droughtBhe LSMs assess longerm
hydrological drought involving soil moisture condition and overlooks seasonBligsically
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distributed hydrological models, suchtasVIC (Andreadis and Lettenmaier, 2006; Sheffietd
al., 2009) are expected to beetter at handling surface and subsurface hydrological processes

but maycontribute larger uncertainties owing to the inherent parameterizations

Understanding. the ability of climate modétsreproduce regional drought (seasonal to decadal
time scale) _patterns and accurately reproduce historical observations at réhgglaat than
GCMs)'spatial“scales is crucial for water resources planniig NARCCAP is a plausible
choice to"study meteorological drought over the CONUS. NARCCAP otiaersarchive
simulated data & horizontal resolution of 50 krfMearnset al, 2009, 2012pasedon runs of
six regional glimate models at three hourly time steps and produced in two.pPhsass |
(which runs‘fram 19722004 with usable period 1982004 excluding sphup data) dynamically
downscales retrospective atmospheric reanalysis and yigifect boundary forcingPhase |l
(runs from 19682000 with usable period 1942000) downscale data from free running coupled
atmospher@cean general circulation modelsThe prior literature hasiot examined the
performaneerof NARCCAP in simulating observed meteorological droughts witipipagon as

a sole forcinguinput.

We examineé meteorological droughts in presetday climate (19742003) in NARCCAP
ensembles Studying meteorological droughts is importgtmarily for two reasonsFirst,
prolongedmeteorological droughts often act as a catalyst for more damaging other drought
categoriesysuech as agricultural and hydrological droughts (Wilhite et al..2®delnd, the
ability to repreduce observetieteorologicadrought trends can providdakeholdeconfidence

in modelskills relevant foimpact assessmentThe analysis of preseday climate simulatio
allows an identification of systematic model errors, which in turn helps in better understanding
of climate change sigmaiin projected time periods (Giorgi et al., 2004). this study,we
examinethe_ability of both GCMdriven and NCEPdriven RCM runs to simulate observed
drought attributes. Since reanalysis effectivehcapsulategveather prediction model analysis
fields, it iIS"appropriate to compare the RCM output with observations on an individual event
basis. In GCMdriven runs, GCM outpst ae used to provide boundary conditions for both
historial and future climate runs. Howevdaor historical rurs, model performare cannot be

evaluated against individual evenend comparison with observat®ms only possiblefor
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statisticalattributesindependent of time steps. Hende the latter case, only those statistical
properties of droughtsvhich are temporally independehave been analyzedVe examie
meteorological drougbtwith most commonly usedindices specifically, the Standardized
Precipitation Index (SPl)which is a measure of water availability relative to the baseline

condition(MeKeeet al, 1993)and captures muiscak nature of drought.
The presentsstudgvaluatedollowing primaryresearch questions for the CONUS:

e How good are the Phadeand Phasdl simulations of the NARCCAP RCMs in
providing credible predictive insights for meteorological droughts and iagstc
drought statistics?

This in turn leads to few related ancillary questions, which directly relates to data and analysis

methodology=and howt translate to overall meteorological drought trends:

e Do observational datasets obtained from different sources consistently simulate trends
in precipitation, one of the major drivers of meteorological droughts?

e Howssensitivearethe drought metrics analssociated statistics at different temporal
scales?

e “Do RCMs add substantial value in simulating observed precipitation as compared to

“raw” precipitation directly obtained from GCMs?

Our study adds to existing literature in several aspects. First,@éoeat few studies attempted

to evaluate“the, credibility of RCMs in general gahd NARCCAP in particular in replicating
meteorologieal droughts and associated attributes, although equivalent analyses Imave bee
performed for temperature (Jeong et al., 2014), precipitation (Wehner, 2012; Singl2@1 2)

and wind extremes (Pryor et al., 2013a; Pryor et al., 208&pnd, while previous work mostly
evaluated ,RCM skillagainstobservations based on reanalysis driven RCM experiments or
projection,of.extremes based on GCM driven experiments, this study is one of thimdirdtat
investigateghe credibility of Phase | (NCE&riven) and Phase Il (GCiMriven) NARCCAP

runs in sinulating meteorological drought in presefaty (19712003) climate. Third, we use
different quantitative metrics to assess RCM skills against multiple observational datasets in
simulating wide ranges of both temporally dependent (such as trends, tempizdailityain

drought area) and independent (frequency and pers&tesgional drought statistics, which are
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not yet investigatedn any of the existing literaturdn addition, we evaluate GCldriven

RCMs’ skills with respect to their host GCMs. This is because in most cases the performance of
the models is debatable when RCMs are driven by GCM fields due to the potential lbyajual

the forced GCM climatologies. We hope our analysis will assist modeling comymiani
recognizing.systematic model erors, which providesan opportunity for further model
development_and improvement. Further, the analysis presented herein will be helphd for
stakeholdercommunityin identifying model limitations before using thee modelsn Impact,

Adaptation and/ulnerability (IAV) studies

Herethe objectives are tovaluate thecredibility of NARCCAP RCMs to reproduce observed
statistical “attributes of meteorological droughts over the CONR&hustnesss typically
examined at decadal to muttecadal timescatebased on maximum data availability of the
NARCCAP_model runsspecifically, 19802003 for NCERdriven runs and 19741999 for
GCM-driven__simulations. A 25-30 years’ timescale istypically used to determine a
climatological-average by climate scientists since it is long enough to filter out natural variability
(e.g., the “impact obceanic oscillatorsjn the climate systemsCoincidentally, he typical
planning“herizonof water resourceplanners andnfrastructure managetis usually about 30
years in.the futureThus, insights based or25-30years’ averagecan helpto understand

projection skills, quantify uncertainty, aadsessegional impacts of meteorological droughts.

DATA AND METHODS
StudyRegion
Our study focuses orhe CONUS (20°N - 50°N, 125°W - 60°W). We consider nine
climatologically_homogeneous regions acrtss CONUS as suggested in the literatkarl
and Koss, 198 Karl and Koscielny, 1982)Figure 1[INSERT FIGURE 1 HERE]shows
climatologically homogeneous regions and topography map of the CONUS. Delineation of these
regions is_performed using principle component analysigidded PDSI values. These regional
classifications_have been used by many researchers earlier in the context of (Easatgrting
et al, 2007; Soulé and Yin, 1995).

Observational data
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We usedthree different precipitation data setgilable at monthly time stepar validation The

spatial resolutions of the observed datasets are close to that of NARCCAP simulated models
(0.5°). The wse of multiple observations, while not a nornmnodel evaluation studies, needs to

be considered for droughts, specifically becahsecan address the issoé uncertainty in the
observed dreught patterm&s discussed by Trenberth (2014), different observational data sets
may generate’ considerably fdifent insights regardingdroughts trends (e.g.see the
diametrically“opposite insights in Dai et al. 2013 &iteffield et al. 2012). Thus, rather than
recanmending one observational dseafor validation we believea better strategy may be to
exanine multiple observational datks anduse agreement about these datasets as one measure
of credibility for, any insight (including diagnosis or prognosis) of droughtsther words, we
would assessrcredibility of models by examining those drought patterns that exhibit similarity

across mulple abservations.

The firstdataseis produced by the Climate Research UGIRU TS3.22 of the University of

the East Anglia (Harris et al., 2014)his includes gridded precipitation data over land at 0.5°
spatial reselution for the time period 192013, out of which we extracted data for the period
19712008wfor the analysisHarris et al (2014) presents detailed comparison of CRU
precipitation” climatology against other available obsepetipitationclimatologies and found

the dataset compareavbrably; however the major deviations mostly in regions or time periods

with sparser observational datasets.

The second.dataset is fratme Global Precipitation Climatology CenteGPCQ at Deutscher
Wetterdienst, hereafter referred as GPZ6 (Schneider et gl.2014) This dataset contains
global land surface precipitation based on 67,200 stations worldwidieh have record
durations ,of 16years or longer. The dataset contains monthly precipitation record at a regular
spatial resolution of 0.5°, 1° and 2.5° with temporal coverage ranges from 1901 té-@0h@.
present studywe extracted data for the common period of 12@Q3 at a spatial resolution of
0.5°.
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The third dataseis the University ofDelaware V3.01 (UDel v.3.01; Willmott and Matsuura,
2001) The dataset is available at a monthly temporal resolution over global lasdspagening
from 1900 to 201@me period.

Regional Climate Model Data

We used archive simulated data from six regional climate models dsw&ICEP and GCM
boundary “eonditions. Details of all NARCCAP models considered in this studysteé in
Table 1[INSERT TABLE 1 HERE] All operate at a spatial resolution of 50 km over landmasses
of 48 Contiguous United States, most of Canada to 60°N anidenn Mexico. Simulations with
these models-are produced for the current and theiidentury (20412070) undethe SRES

A2 emission scenario. The models differ in structure and parameterization schemex.the
regional models, CRCM and ECP2 include “spectral nudging” technique, which imposes tim
variable largescale atmospheric states in the integration area of the regional climate model
domain (ven_Storch et al., 2000; Wehner, 2013)he remaining regional models were
unconstrainedwinside the integration aré€a. perform comparative analyses, the NARCCAP
models with three hourly temporal resolutions are aggregatedhtmthly time scale. To avoid
missing data near the end of the simulations and to maintain consistency throughoaly$esa
while trying™to include as much data as possibleN&EP driven runs are analyzed during 1980
to 2003, whileGCM-driven RCMs are analyzddr the timeframeof 1971-1999.

In generalg/asscompared to the single model, the imatel ensembles increases the overall
skill, reliability*and consistency of the model performaritebaldi and Knutti, 2007)vhile
characterizing model uncertainty frothe ensemble sprea@Sanderson and Knutti, 2012)
Hence, apart from individual model performance, the performance is also evaluatedtion

model ensemble members (mutibdel median and bounds).

Global Climate Model Data

To understandwalue added BCMs, we compare the performance of NARCCAP ensembles
with precipitation simulatins of the twentieth century (208M) scenariodrom their host (or
driving) global coupled atmospheric ocean general circulation m¢d€§&CMs) achived at
monthl time steps CCSM30, CGCM31, and GFDLLCM2.0 and HadCM3 These AOGCMs
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are made auilable by the World Climate Research Program (WCRP) Coupled Model
Intercomparison Project Phase 3 (CMIRBehl et al., 2007)The HadCM3 run for NARCCAP

was different from thatni CMIP3 archive, thereforéhe outputsof this GCM simulationvere
obtaired by contactingNARCCAP teamdirectly. To maintain simplicity in the analysis the
initial condition biases associated witte GCM simulatiors areassumed to be insignificant and
only thefirst realizationwas used when multiple ensemble runs were available for each of the
driving GCMs(Rochetat al, 2014).

All climate model outputs are interpolated to a common grid of 0.5° latitude/longitialetias

using the hilinear interpolationtechniquein the Climate Data Operators software (CDO,
https://codezmaw.de/projects/cddp compare with observations, ldsda mask at 0-8egree
spatial resolutions are obtained from the Oak Ridge National Laboratory Distributed Active
Archive Center (ORNL DAAC) andre applied to GCM and NARCCAP simulated fields.

MeteorologicaliDrought Attributes

Meteorological drought is referred as a precipitation deficiency, in comparison to normal or
baseline condition. We usg&tandardized Precipitation index (SRlwheren = 3, 6, 9 and 12
month accumulation period) as an index of meteorological dro8gttepresents the number of
standard deviations above or below that an event is from the long run $eeet al, 2002.

To estimate=SPI atna“n-month” time scale (hence, Sf), an accumulation window ai-
months is applied to a given monthly precipitation time series, following whidatiatisal
distribution is fitted. In this paper, as in the original workMdKee et al, (1993) we used
Gamma distribution to fit precipitation time series aggregaten=at months(McKee et al.
1993;Sims.et.al., 20025PI is spatially invariant and probabilistic in nature and able to capture
different drought states ranging from short, medium and -temg drought conditions
depending“on‘the length tie accumulation periodsPI hasa number ofadvantages, such as
(Lloyd-Hughes and Saunders, 200Z%)) The SPI is based on precipitation and requires
computation of: only two parameters, compatedmultiple computational terms needé¢al
computePDSI. (ii) By avoiding dependence on soil moisture conditions, it can be effectively
used bothn summer and winter seasons and is not adversely affected by topograpltyceni)

be tailored to specific needs for impact assessnk@mtexample,tis varable time scales are
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useful for modellingawide range of meteorological, agricultural, and hydrological applications.
The temporal nature of the index facilitates understanding drought dynamics, sucht asmdnse
cessation, which is difficult to bieacked by other indices. (iVpandardized nature ensures that
the frequency of extreme events at any location and on any time scale is corGamigatsely,
application.ef,SPI has few potential disadvantages: (i) the quantity anbilityliaf the data
usa to fit @ suitable probability distribution. (ii) Due to standardized natureisSRcapableof
identifying“regions that are more “drought prone” than others, and (iii) Employing SRirtdrs
time scales’(such as, 1, 2, and 3 months) to the regitimdomi seasonal precipitation, resulting

into erroneous large positive or negative SPI values.

The drought properties are derived using threshold methods, which is based orastistig
of runs (Yevjevich, 1983) for analyzing sequential time sereslrought event is identified
when an uninterrupted sequence of SPI values (at monthly time scales) remains equal to or
below the28=percentile of the SPI distribution over the period analyzed at a specific site
(Svobodeaet al, 2009. We characterize meteoogical drought to following propertiedIcKee
et al. 1993):

e Durationsnumber of consecutive months when SPI remains equal to or below the

threshold.value.

e Severity: cumulative values of SPI within the drought duration. In general,tHer
convenience severity of drought eveat a particular time scale, is taken to be positive and
expressed ad/icKeeet al. 1993)

s,=—zD: SP), i=1,..,n (1)

e Percentage Area under Drought (PAUD): The fraction ofthe area (in percentage) is
considered under drought if the SPI values for the grid cells reach below theespecifi
threshold limit in line withthe former study (Sheffield and Wood, 2008). Accordingly,

PAUD (A)at a time stepis computed using the expression
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grid

2 UZ 27, ).A
A =L vt=12,..n (2)

Ngrid

2 A

i=1

where 2{ys}, is a logical indicator function of set, taking the value of either O (iF is

false)“or~1%(ify is true), Z is the SPI valuef montht, Z, is the threshold limit of SPI
for identifying drought in the gridA denotes influence area thfe grid i and computed by
area of the grid cellweighted by the cosine of the grid latitude &g, is the total number

of grids in"the region.

e Persistence: The persistence in hydroclimatic time series represents temporal grouping of
non-periodic similar events, such as occurrence of similar conditions such as dry (or wet)
spells.in.a. cluster of time fram@umar et al, 2013; Meseet al, 2012; Outcaltet al,
1997),Drought persistency is quantified by Hurst exponent (in&gx,The Hurst index,
0.5<H<1 (H = 0.5, the datas independent, which is expected in a random series and due
to theabsence of longerm temporal correlation) represents positive persistency in the time
serieswand reinforces the trend. This implies, if theesad showing downward (upward)
trend ofits longterm average in the previous period, it is likely to follow the same trend in
the subsequent time perigumar et al, 2013). For many geophysical time serieis,
values, range between 0-6 0.9 (Outcalt et al, 1997). We use Detrended Fluctuation

Analysis(Penget al, 1994;Weron, 2002}o compute Hurst exponent.

Methodelogy-and Evaluation Metrics

First, we evaluate uncertainty in different observational dats deting 1971-2003 isimulating
precipitation.For this,we compae the first and second moment properties (mean and standard
deviation) andag autocorrelation ithe datasets. Then we investigtie sensitivity of SPI at
differentstime scaledy comparingfollowing metrics over the land gridsi) (spatial pattern
during notable drought years, and regional distributionsiidfcfoss correlation fiek (ii)

weighted average drought severity (weighted by the drought duratiah(jy) frequency.
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After investigating uncertaintyn different observations andhe evolution of meteorological
drought at multiple time scales, we analyzed skillhefGCM andeanalysigiriven NARCCAP
ensemble# reproducingobserved droughtatistics We adopted three general criteria to assess
the robustness _of NARCCAP RCMs’ to simulate historical drought climatolddye first
criterion assesses the value addedthwy multi-model (hereafter referred as MME) median
NARCCAPR,GCMRCM ensembleagainst thesimulation of precipitation fields frothe MME
medianfaw*host” GCM during 29years (19741999) ofthe simulation time periodThe second
criterion assessede robustness ofhe NARCCAP, driven byNCEP boundary conditiato
emulateolbserved drought trend$980-2003)Here we used individual NARCCAP RCMs and
their multtmedel ensemblesMME median and its boundsMME minimum and MME
maximum)=TheMME minimumandMME maximumensemble®f the RCMs arecompued at

10" and 96" percentilelevels of the model rundhe third criterion assesses the ability of GCM
driven RCMs_in simulating statistical metrics of temporally independent observed drought
propertiesover 19711999. Brief descriptions of each of the assessmmaethodsand metrics
usedare summarized here:

In the first assessment, we evaludbe added value of GCNRCM NARCCAP run against the
host GCMby _comparing spatial patterns of climatology and variability adtes€ONUS. We
also compare thevariability in seasonal precipitatiom GCM driven NARCCAPRCMs and
their host GCMs against observatioh8e use these metridsecausgo assess the impact of
climate changgit is necessary texaming as a minimum, thability of the models teimulae
mean andqvariance reasonatbligh respect to the observatioite second assessment is based
on thenumber”of test statisticsetween observations and moddisring theanalysis period
(1980-2003):

e Taylor diagrams (Taylor, 2001)of regionally averaged $Rime series to assess pattern
error.overthe nineregiors.

e Trends«in SPI time seriegsing nonrparametric MantKendall trend statistics with
correction for the ties and autocorrelation (Hamed and Ramachandra Rao, 1998; Reddy
and Ganguli, 2013). The slope of the trémdstimated using Theen estimator

e Pattern correlation analysis dfought climatologyusing norparametic Spearman’s

rank correlation.
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e Spatiotemporal variability oAverage (median) percentage area uddenghts(PAUD)
using box-plots andpatial autocorrelation plots

e Distribution of drought frequency using box plots.

e Box plots and scatter plots of observed versus absolute bias (modulus differereenbetw

modeland observations) in median drought severity depiatsgciated uncertainty

In the third “assessmenthat compaes baseline simulationg1971-1999) of GCM-driven
NARCCAPR runs relative to observations,only those statistical metricsof droughts are
consideredihat,are time independent. In this case consider twodrought propertiesi.e.,
frequency and‘drought persistenée analyzehe distribution of droughfrequencyover nine
regionsusing box plotsThe persistencen SPI time series is computed usiHgrst exponent.
Agreement.in_Hurst exponebetween multipleobservations and the RCMs is analyzed using
pattern correlatios

ANALYSIS

Comparison of Precipitation Datasets

Figure 2[INSERT FIGURE 2 HEREHepicts the mean annual precipitation, standard deviation
and laglrautocorrelatioior the CRU TS3.22, GPCC#6;, and UDel v.3.0precipitation datasets
over the 33year time period (1972003).We found an overall agreemeanong observations

in simulating statistical properties and general spatial patterns of annual precipitdteon.
agreement amongdatasets are highest in the Wastth Central regions and lowest in the
Northeast region as analyzed by pattern correlation metfiesinual average precipitation. In
addition, pattern correlation analyse mean annual precipitation over different meteorological
subdivisions'shows theorrelationbetweenGPCC v.6 and UDel v.3.01 datasets are higher as
compared- tahecorrelation letweenGPCC v.6andCRU TS3.2XMatasetThe pattern correlation

of mean precipitatiommetweenGPCC v.6 and UDel v.3.01 datasets ranges from 0.89 (Northeast)
to 0.98 (West north Central), whereas correlation between GPCC v.6 and CRU TS&s2#sdat
ranges fom 0.76 (Northeast) to 0.96 (Wesdrth Central)On the other hand, theorrelationof
annual “precipitation between CRU TS3.22 and UDel v.3.01 datasets varies between 0.72
(Northeast) and 0.97 (Wesbrth Central). Spatial analysis of annual average gyéation
suggests CRU TS3.22 tendsawerestimateannual precipitatioin theWestas compared tthe

other two datasets (Figuret®p pane). CRU TS3.22 datasshows éss than 11% of grid points
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with an average precipitation 800 mm or lessper yearin contrast to other two datasets, in
which 13%and more grid points have annual average precipitafi®@®0 mm or less Further,
CRU TS3.22datasetunderestimates the standard deviation for low vahlfeprecipitation
especially_ovethe Southwesas compared to the other two datasets (Figuteopm panél
The CRU TS3.22 datasets reportedly have the wet Wids respect tahe other datasetsince
around1996 as‘noted in earlier studies (Trenbetthl, 2014 Feketeet al, 2003).

Sengitivity'in"Spatial Patterns of Droughts at Different Time Scales

In the following analysiswe investigate thesensitivity of SPI at different time scalésgure 3
[INSERT FIGURE 3HERE] showsspatial distributios of SPI calculated at-36-, 9-, and 12
monthtime scales at the end of July during three notable drought years between 1971 and 2003.
For instance, at the end of July 1978 month SPI uses precipitation total of May, June and July
1976, whilesther 12nonth SPluses the precipitatiototal rom August 1975 hroughJuly 1976.

These timerseales reflect the impact of drought on the availability of different water resources.
For example, soil moisture respa@td precipitation anomalies dherelatively small time scale
therefore a 3nonth SPI can be used to monitor soil moisture conditiandifferent stages of

plant developmentOn the other hand, streamflow, reservoir storage and groundwater respond to
longterm_.precipitation anomalies, therefore a-m@nth SPI reflect hydrological dught

condition.

In generalon a 3month time scale most of the regions have patchdsealry and wet pattern

and are characterized by nemrmal conditions(i.e., 0.8<SPI<0.8). The Midwesternand
coastal California regions during 1976, Midwest and Southeast regions during 1988 and part of
Westnorth. Central, Southwesand West regions during 2002 are in moderate to extreme dry
conditions:During 1976, on a shortdB-months) and medium6{ and 9months) time scales
Midwest region is characterized Isgvere drought conditions, whereas on a longer time scale
(12-months) the region iaffected bynearnormal to mediundroughtstate Converselyon a
shorter and medium time scales, Southyestl Westregionsare mostly characterized by near
normalto wet sate. Howeverpnalonger time scale the regions areaimoderate drougldtate
indicating the probability of hydrological drougbtwith a consequent loss of water resources.
Similar trend also notedn 1988,in which on a shorter time scale Midwest region is affected
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under severe drought condition, whereas on longer time scale the region is ckaadhdigri
medium to severe dry state with moderate to severe drought condition extendeds tovest
north Central regiond-urtherevidence oimoderatedroughtstateis prominent over South and
Southeast usin§PF12. Howeverat time scales of 6 andronths Southeast is found to be in
near normal.conditianin the year 2002, the percentage grid pointthe near normal tate at
time scales, 36-, 9, and 12monthsarefound to be around 54.1%, 53.8%, 48%, and 39.3%
respectively;“indicatinghat with anincrease in accumulation timeades,the increasen spatial
extentof dry“and wet patterrThe percentage grid points under extreme drought state (3PI <
are foundito be'around 10% in SP&nd17% in SP112, showing sign of longerm hydrological
drought especially ovethe Southwestwest and partof Southeast regions during 2002.
Previous studies (US Drought Monitdittp://droughtmonitor.unl.edusuggest in summer 2002,

more than 50% of the contiguous US was under moderate to severe drought conditoeas
the western _part of the country has been in the grip of severe droughts since lafEn&939.
month SPLmay be misleading in tBeuthwestind WestSince these regions are characterized
by little raimp=the corresponding historical totals will beall leading to relatively small
deviations“on=either side of the meavhich could result in large negative or positive SPIs
(WMO, 2012).

Next weexamine thesensitivity of drought statistiassing distributions ofirought propertieat
different time scalesFigure4 shows [INSERT FIGURE #HERE] distributions ofthe spatial
crosscorrelation of SPI time series over the nine regitmghese figureghe interquartile range
(IQR) of thesboxplots show a measure of spatial variability across the regiwhde point
statistics such as SPI time series, may be describedhiap, spatial properties such as cross
correlation vary, betweea pair of grid points, and should be available for every possible grid
location. The cross correlations of SPI time series betwaepair of grid points are computed
using nonrparametric Kendall’s 1t correlation over the land grids of the CONUS. Figure 4
suggests_regionalr@ssecorrelations are positively correlated over most of the grid poliis.
drought indices tend to be closer and less uncefshiown by & and 9% percentile whisker
plots) at smaller time scales; however at longer time steéndices,in general differed more.
We found that the uncertainty bounds{2fhd 7%' percentile) in spatial cross correlation grows
with theincrease in SRiime scals over most of the region¥he median crosesorrelation over
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Southwest is found to be leasttime Southwest and ranges from 0.29 (SPto 0.33 (SRIL2)

and highest in the Northwest region and varies between 0.48)J3id 0.5 (SP12). Figure 5
[INSERT FIGURE 5HERE] shows distributiomof weighted average severity and number of
droughts.The regional distribution®f weighted average severiffyigure 5,top panel show the
increase irdrought severity witlihe increase irthe time scalesin both shorter (3nonths) and
longer (12month) time scales Midwest (Easbrth Central) is characterizday the highest
median“droughseverity (around 16.65)On mediumterm (6- and 9 month time scales) West
north Central“region is characterized time highest average drought severit longer time
scales many regionsincluding Central, South, Southeast and Westh Central show high
median dreught severity (exceeding 1@n the other handregional distributions of drought
frequency (Figure Soottom panglsuggest decrease the number of droughts with increase i
thetime scalesAt shortto-medium time scales, highest average drought frequency is noted over
the West and ranges between around 21 (at a time scalenohth SPI) and 38 {Bionth SPI)
droughts oran average (per 3gear).At 12-month time scalehe median drought frequency is
found to beshighest ovéine Northeaswith around17 drought on averagger 33yeal) followed

by West, South and Southeagth around16 drought on averagger 33year). All though at
longer time,scalehe Northeast hathe highest average drought frequency, it is characterized by
the least.medianseverity (around 12.5)This implies higher average drought frequenadm
Northeastis counterbalanced by a lesser average severity. Recéfalhoeet al (2007),
repored frequent droughts ithe Northeast in recent years with extended-ftow periods in

summer.

In subsequent analysiSPI at an accumulation period ointonthsis chosen over other time
scales since Iteflectsseasonal to oderatetrends in precipitatiofWMO, 2012). SPIin this

time scalas effective for the detection of agricultural drought conditibesauset indicatesthe
water content of vegetation and the soil moisture conditf@mss et al, 2002; Ji and Peters
2003). Moreover, SPI at shortdime scaleqsuch as at 1 or-Bionths)may give erroneous
results at dry, regionsvhile at longer accumulation periods (such as, 9 and 12 months) the

uncertainty in drought conditions may increase due to the limited number of avaiaings:

Robustness of GCM Forced NARCCAP RCMsin Simulating Regional Precipitation
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In this section aguantitative evaluation of the RCM skill over GCMs during 12999 is
presented. Figure ANSERT FIGURE 6 HERE] compare annual average precipitation and
standard deviation dhe ensemble median ¢¢n GCM-RCM pairs(i.e., CRCM-CCSM, MM5I -
CCSM, WRFGCCSM, CRCMCGCMS3, RCM3-CGCM3, WRFGCGCM3, ECP2GFDL,
HRM3-GFDL;RCM3-GFDL, and HRM3HadCM3 with theensemble median dfier four host
GCMs (CCSM3.0, CGCM3.1, GFDICM2.0, and HadCM3 In general, GCMs able to capture
broad features”of timaveraged precipitation pattern reasonably well, howethay fail to
simulate topographically induced features of precipitatioe toinherentcoarser horizontal
resolutiors. On other hand precipitation pattern simulated from RCMs shows a number of
topographically, induced finecale regional features and their variabjlgyuch as precipitation
patternover‘the Southwest Westnorth Cental and Northwestegionsrespectively although

their simulated) intensity may differ from observatiansmany regons In general, annual
averageprecipitation map shows tendency oflGCM-driven NARCCAP ensembketo produce
larger pregcipitatiorover thePacific Northwesteand Northeastegionsas compared to their host
GCMs. However, they could able to simulate the dry zone transition that arises from
precipitation ‘shadowing by the mountain ranges in Ititermountain region, which is not

adequatelyepresented by their host GCM figlgigure 6).

Next we compare seasonal precipitation fiedtlwulated by the GCM and the GCM driven
NARCCAPR. RCMs againstmultiple observationsover the nineregions Figure 7[INSERT
FIGURE 74HERE] shows thedistribution of seasonal precipitation in the three observations,
multi-model=median GCM and GCidriven NARCCAP ensemblefAmong obserations, a
close agreement is noted beameCRU TS3.22 and GPCC v.6 datasimulating seasonal
precipitation However,UDel v.3.01 uderestimate precipitationover the Northwestand West
in all seasons.. For DJF (DecembeFebruary) season, both climate models ffddE median
of GCM driven NARCCAP RCMs and thBIME median of theirhost GCMSs), especially
NARCCAP.overestimates winter precipitation variability ove Northwest andSouthwest
regions. Both, climate models fail to capturthe spatial variability of precipitation over
Northeast, Southeast and South regions. Over Southbagperformance ofMME median
NARCCAP RCM is found to be superior to the host GCM. For M@Warch — May), climate
models MME median host GCM and NARCCAP RCMdjverestimate precipitation over
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Northeast, Northwest, Southwest, West and Westh Central regions and underestimate in
Sautheast and South. Taken together, in both winter and spring seas@patilwariability of
NARCCAP RCMsis found to be higheover the Northwestand Southwestegionsrelative to

their host GCMsThe winter precipitatiorover the Southwess produced by largscale low
pressure frontal systems generated from the upper levdatititie and sultropical jet streams,
drawing necessary moisture from the Pacific Ocean (Woodhouse, 1997). Simulation of
precipitation'may be sensitive to the modelotation irrespective athe topographic forcing as
shown by"Giergi and Marinucci (1996). In their experimetits precipitation amount tended to
increase at finer resolutions. Greater topographic factors at higher resolution further strengthen
this effed¢. FordJA (June- August), in generaboth MME median GCVRCM pairand the host

GCM underestimate seasonal precipitation trends except in Northwest anshdktbsCentral
regions.In the Northwest, MME median RCM overestimates precipitatieariability relative to

the MME media host GCM and the observatio@onversely,mn Westnorth Central regiorthe

MME median GCM simulates highest median precipitation. Neither the NARCCAP nor their
host GCMreould able to simulate signaturettod North American mosoon(NAM) over the
SouthwestTheinability to simulak precipitation inthe Southwest is primarily due to thssue

with downscaled simulation for the regi@ominguezet al, 2012; Wanget al, 2009)due to its
complex.topographical features. As noted by Bukovsky et al. (2013), the dry bias in RCMs,
especially over Azonais potentially due to inability of RCMs to develop low level onshore
flow and ‘Gulf of California lowlevel jet during monsoon season, needed for transporting
necessarysmoisture for precipitation in the region, which causes very low f@tmipamount
during JJAsmonths ovethe Southwest. Moreover, in their studhey found thathe GFDL

model lacked the skill of providing adequéieundary conditions for RCM to simulate summer
precipitation climatology ovethe Southwest. These features and regional terrains are not well
simulated by most of the GCMs as shown by earlier st@iekier and Zhang, 2007; Lest al,
2007).For, SON(September November)season, MME median GCM largely underestimates
seasonal_precipitation folled by the MME median NARCCAP ensemble over Central,-East
north Central,, Northeast, Southeast and South regions. Over Southwest and West seasona
precipitation is reasonablyell simulated by the MME median NARCCABCM-RCM pair.
Except, JJA in all seasongriability or the ‘spread’ oNARCCAP RCM is found to be much
higher as compared to the host GCM and the observafitrsMME median NARCCAP
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ensembles shasvmodesskill in simulating winter precipitation over Southweast compared to
its host GCM howeveMAM is the season haen he modebverestimatseobserved precipitation

amount themostwhile SON being closest tithve observations.

Robustnessof ' NCEP Forced NARCCAP RCMsin Simulating Regional Drought Statistics

In this sectiopwe illustratethe quantitative evaluation of thBhase | NARCCAP runwith

NCEP boundary conditionslative to multiple observatioal datasetsluring the 1980-2003
period. Since the Phase | simulations directly utilize “perfect” boundary forcing, therefore it is
expeted that the regional atmospheric model results, such as precipitation can be
deterministically compared with the observation& evaluatehe robustness of NCEP driven
NARCCAP=models with those sistical metricsthat are timevarying. In this categorywe
include simultaneous spatial iteomparison between models and the observations using Taylor
diagrams/ trends, simulations of regional drought propeatiedemporal variability in drought

area over the nine regions.

e Simulation of SPI Statisticsand Regional Drought Trends
To makea simultaneous intecomparison ofhe spatial pattern between models and observation
at regional'leved we employed Taylor diagramiBaylor diagrams providée concise statistical
summary (of how well patterns match each other in terms of their correlatioomeaasquare
difference and the ratio of their varianc&sgure 8 [INSERT FIGURE8 HERE] shows the
Taylor diagrams for individual NCEP driveNARCCAP modés and their multimodel
ensembles.foregional mediarsPH6 time series. Each model is compared with respect to GPCC
v.6 data using centered remieansquaredifference (RMSD), Pearson’s correlation coefficient
and standard deviation (SD). To investigate observational data uncertainty, ERRR Tand
UDel v..3'01 are also compared to GPCC v.6 and plotted on the same Tigeir@bservation is
shown orthe xaxis of the figure as a reference point, with the distance from this reference point
from the originis proportional to the standard deviation of the spatial pattern for each region.
Standard deviation contours from the origire shown in black. Contours showing the RMS

differences between the NARCCAP ensembles and the observation are shown iMguoksn.
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results are then plotted in the azimuthal position based on the centered RMS difference and
correlation with(reference)observation and shown in blue contours, representiagpatial

correlation between the models and the observation.

In examining.these figures, we nabe agreement between observational datasétigh in most

of the sub-regions. In genergheagreemenbetween CRU TS3.22 and the reference observation
data (GPCCVv.6) is higher as compared to betwHaeal v. 3.01land GPCC v.6 datalhe spatial
agreement between CRU TS3.22 and GPCC v.6 is highesthm/€entral region with RMSD
error of 0.064 and pattern correlation of 0.9954. However, thesNorthwest andVest both
CRU TS3.22sandUDel v.3.01are in close agreement with each otfidre agreemenbetween
UDel v.3.0%"and GPCC v.6 Isw over theNortheast and Eastorth Central regions, which may
be attributed to local differences withmegionsacross the griddedatasetsConsistent with
previous findingswe find multi-model ensemble perform relatively better as compared to single
individual models. For example, ov€entral region, the standard deviation of MME maximum
is close torGPCC v.6 with centered RMSD of 0.55 and pattern correlation of 0.68 (statistical
significance level at 5% level), whereas MMtedianachieves a correlation with GPCC v.6 of
0.70 with*RMSD of 0.60. The pattern correlation statistics for MME median rangasOf2y
(Southwest)to 0.58 (Wesibrth Central). On an individual model baske two RCMs that use
spectrainudging, the CRCMand theECP2 perform better in all striegions.The spatial pattern
correlations of CRCM varbetween 0.35 (Northeast) and 0.66 (Whewstth Central) All models
exhibit weakest spatial correlation ovke Northeast (ranges between 0.15 and 0.35) and highest
over the West<(ranges between 0.55 and 0.69). Furéxeept Central and Easbrth Central
regions,all models underestimatbe spatial variancevertherest of theregions.Overthe East
north central] the MME median and MME minimum overestimate spatial varia@uethe other
hand, overthe Central regionall models including their mukinodel ensemblesverestimate
spatial variance of the SPI field with the highest deviation is noted by the MMEmfeticaved

by the MME"minimum and the CRCMIhere islittle spread among models in simulating
regional SPkstatisticsover West. Among individual moded HRM3 perforns poorly over
Central, Eashorth Central, Northeast, West, Wasirth Central and Southeastegions;

likewise RCM3 overthe Northwest and MM5I over the South and Southeast regions.
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Next, we analyze SPI trends simulated by models against @issrs during 1980 — 2003he

ability of RCMs to reproduce observed drought trendsattems may be considered a necessary
(but not sufficient) condition for these RCMs to credibly simulate signatures obpatjenic
climate changes under future emission scenarios. However, anticipated changes in radiative
forcing implythat historical skills may not necessarily be adequate to infer future performance.
At the very, least, the agreement among multiple model ensembles, or model consensus, needs to
be considered."Furthermore, the inability of RCMs to reproduce observedtpaitgrns may

not necessarily bhe failure of the RCMs exclusively, rather they may be inherited from GCMs
forcing. Thus, prior literatur@Ault et al, 2014; Schiermeier, 201Seageet al, 2009)suggests

that GCM projections may not always be able to simulate historical-dregght events, which

in turn are‘related to larggcale dynamical pattesnNeverthelessover this short period of time,

the results of trend estimatenay be wmcertaindue toa number of factorqge.g, large scale
climatic osclillations, intrinsic climate variability and anthropogenic chgngssnoted by
Bukovsky (2012) This can providepredictive insightabout models’ credibility to simulate
regional climate irthe projectedime period(Giorgi et al. 2004)Moreover, analyzing trends is
helpful in identifying causes and characteristics of the model Bigsire JINSERT FIGURE9
HERE] 'shows the spatial pattern of slopesxgressedin mm monthi'decadé) in the
observations(CRU TS3.22, GPCC v.6 andddl v.3.01) and simulatios from six RCMs
(CRCM, ECP2, HRM3, MM5I, RCM3 and WRFGJoag with their multrmodel enembles
(MME minimum, MME median, and MME maximum) drivdsy NCEP boundary conditions.

The slopesof*SPI at each grid point is computed usingpasametric TheiSen estimator
Statisticalsignificance of trend is examined using Matendall test statisticat 5% significance
level. Grid points withsignificant tends arenarked with asteris& As we notice from the figure
(Figure 9),the two observation datase€CRU TS322 and GPCC v.6 are in close agreement with
each other.in simulating SPI trends; however the trendsléhW3.01 are noisieas compared to

the other _two./datasstespecially overthe Northwest Further, The Udel v.3.01 dataset
overestimates drying trends in Eastrth Central(around 5% grid points show significant
drying against,~ 23% grid points in CRU TS3.22 and 20.2% grid pointsGIRCC v.§ and
Central (around 25.6% grid points show significant drying pattern against around 10% grid
pointsin CRU TS3.22 and around 7% grid points in GPCQG ke§ions andshowswet trend in

part ofthe Northwestregion (around 2% grid points with significant upward/wet pattern while
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other two data show overall significant drying pattefiiffe disagreement in the pattern of trends
in UDel is mainly due to the differences in the interpolation methodology uskd dataset and
the number of station observations used as noted in the earlier studies (TrenlaértB014;
Nickl et al, 2010).

Both CRU and GPCC dataset shprmesence ofignificant drying(negative slope of SPtjend

in theobserved SPI time serieser most part of the North Ameridacluding West, Northwest,
part of rocky mountain an#lidwest regions. Conversely, few regions also exhibit wet or
positive trends; which includiéne Northeast, Weshorth central part ofthe Southeast (coastal
Gulf coast'and’interior regions, such as Alabama, Georgia, North and South Caradirgguth
(Northeas of Texas) regionsThe two observed datasets (CRU and GPCC) show statistically
significant.dryingand wet trend over arourf® — 76% and 24 — 30% the domaimrespectively
Among medels,lte MME medianperformsbestandsimulates72% drying and29% wet trend
(significant) However, it fais to capture significant drying trend over rocky mountain regions
the SouthwestAmong individual RCMsas a wholeMM5I performsthe best and simulate&%
drying and 24%wet trend (significant) akin to CRU datas€&he other RCMsthe CRCM and
RCM3 exhibit,widespreadignificant wet pattern(over around 61%and 74% of the domain
respectively) the HRM3 and WRFG showgignificantdrying pattern(over around 87% of the
domain‘inrbethrmodelsMost of the models simulate drying trend otlex Northwest. However,
none of them simulategidespread significant drying trends over ivest andSouthwestWhile
GPCC v.6, CRU TS3.22and UDel v.3.01 all indicate statistically significant drying ov2%o-
79% of the domain in the Southwest and 44886 of the domain in the West, most of the
models cover.only 14989% of the domain in the Southwest and 1-38%6 of the domain in the
West

e Simulation of Regional Drought Properties

Figure 10[INSERT FIGURESLQ] showsthe spatial distributianiof maximum drought severity.
The gatiakmaps reveal wide variatisamong the models, for instanddRM3 and WRFG
overestimate drying trends ovire Northeast and Southeast respectively. Among rnudtikl
ensembles MME median performsbest in repoducing dryingtrend overthe Southwest;
however,overestimates drying over Central and Hasth Central regions. Moreover,osh of
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the models fail to simulate maximum drought properties tveGreat Plains anthe Rocky
Mountain States satisfactorilythe spatial pattern of maximum drought duratisrsimilar to
those ofseverity (hence, not shown her&pr quantitative evaluations ttfie model skill we
presentheat mapof patterncorrelationanalysis of maximum drought severity and duration
Figure 1L [INSERT FIGURES 1]. GPCC v6 is chosen over the other two datasets as a baseline
for comparisorbecause it is not affected by wet biadike CRU TS322 and contains relatively
smoother trend field unlike UDel v.3.010 investigatdaherelative agreement between different
observational"data, CRU TS3.22 and UDel v.3.01 are also compared in the heaPatiapn
correlationstatisticsare analyzed using an-parametric ranlbased Spearman’s correlatigp,
which is robust against outlierd\s observed from the figure (Figurgl), weak positive
correlation(ranges from 0.0.4) existbetween CRU TS3.22 and GPCC \déta overthe
Northeast region. The coredlors between GPCC and the other two datasetstrong (more
than 0.6) over Central, West, South and Westh Central regions. In simulating maximum
drought severityMME median NARCCAP RCM performs best as comparethéoindividual
RCMs. Amongrindividual moded RCM3 performed best ovéhe West and showed highest
patterncorrelationranges between 0:6 0.8 fFigure 11). Many models show a modest positive
rank correlation (between 0@®4) withreference observatiolPCCv.6); for exampé, CRCM
over the West, SouthwestHRM3 overthe South, RCM3 ovethe Southwest and WRFG over
the West.In contrast, many of the models akschibit negative correlation coefficients, such as,
CRCM and MME maximum ovethe Northwest, ECP2 ovethe South and Southeast, and
RCM3 and*MME Median ovethe NortheastNone of the models including their muiftiodel
ensemble satisfactorily simulate maximum drought severity and duration over Central, -East
north Central, Northwesind Wesinorth Central reginsrespectively In simulating maximum
drought duration, we not@modestpositive correlatior{p = 0.2 ~0.4) betweenmodels andhe
GPCC infew,regions such asCRCM over the West and Southwest, HRM3 ovite South,
MM5I over the Northeast, RCM3 and MME median ovére West and Southwest, MME
maximum_ovethe West respectively. We also ndtee presence ofegativecorrelationbetween
RCM3 and"GRCC ovehe Southeast, Northwest and Northeast regions.

In general, o single model stands oas superior as compared to its peers, hence we employ
regional bias plots to assess model performance over the regions as a whole. pMie com
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median drought severity and absolute bias (absolute difference between observed aed model
drought severityjelative to GPCC datat individual grid points over the nine regiofgyure 12
[INSERT FIGURE 2 HERE] shows therelation between regional median drought severity and
associated biaghe median drought severity is found to be highest theeSoutheast followed
by theNorthwestduring theanalysisperiod (1980-2003)The uncertainties in th@edianbiases
over different regionsresmall andin the ranges between 0.77 and 113®wvever, considering
individual "grid“pointsthe model bias is found to be highester the Southeast (with highest
magnitude 8.0;"a locatian North Carolind and lowest ovethe West (with highest magnitude
5.2 a locationin Nevada).The correlation between observgaPCC)regional median severity
ard the absolute model bias is found to be positive and statistically significantsigdificance
level with Kendall’s © dependence 0.67 (Figure ;1&ght). This implies withan increase in
seveity the model bias grows highewhich indicatesmodel performance drops in simulating
extreme droughsstatistics The relation between observe@rsus modeled median drought

severity is'found to be negative; however statistically insignificant.

Next, we examinghe performance oNCEP driven RCMsin simulatingthe observed drought
frequency=kigure 3[INSERT FIGURE B HERE] showshe distribution of drought frequency
in the nine*regions. Among obsatiors, the agreement betweeBPCC v.6 and CRU 1522
datais high, with theexcepton of the Northwest regionOverall, the spread of UDel v31 data

is high as'compared the other two datasets except in the Northwest, South and West regions.
Observationaldatasets suggest highest average drought frequentye®West fo. of drought
per 24 years20) and lowest ovethe Southwest (no. of drought per 24 years: ¥hong the
models, the individual RCMs includinIME median NARCCAP underestimate median
drought frequency over all regions with respect to olsemal datasets,however, they
satisfactorilysimulate regional spread. Few regional exceptions exist. For exdb@i, inthe
Northeast, RCM3 irthe East and Westorth Central, MM5I inthe Central and Southeast, and
WRFG inthe'Southeast overestimate averafyeught frequencyturther,in the Southwest all
models including their mukmodel ensembles overestiméte observed drought frequencihe
overestimation of drought frequency bye model ensembles concurrent with the inability to
capture thesignificant drying trend in SPI time series the SouthwedfFigure 9)suggestshat

RCMs may generate more frequent meteorological droughts compared to obsshbudtiail to
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capture the intensitgf the eventOver the Northwest, the performance of the two aets with
spectral nudging, the CRCM and ECP2 is comparable to that of GPSiQulatingthe median
drought frequency, however extremes are not adequately simulated by the asoditsatedby
the relatively short length of the whiskerscompared to th&PCCdataes.

In the following sectiors, we evaluatethe skills of NCEP forced NARCCAP models in
simulating spatial extent of drougiftigure 14[INSERT FIGURE # HERE] showstemporal
variability of‘average (median) PAUr the nine regionsThe maximumPAUD is found to be
~ 81% duiing 2002 inthe Southwest region, followed by ~8%% during 1985in the Eastnorth
Centralregions respectivelyThe meanPAUD time seriess reasonablyvell simulated bythe
MME mediansNARCCAP ensembles driven the NCEP boundary condition. However, few
regional exceptions exist in sonoé the yeas. For example NARCCAP RCMs overestimate
PAUD over the SouthertS during the year 183and underestimatever the Southwest,
Northwest_and Westorth Central regionsluring 2002. In particular, NCEP driven RCMs
overestimate variability of PAUD time series over the Wieshost of the yearsThe box plots
in Figure I4show interannual variability othe models, whiclurther confirms the discrepancy

between observedd model simulated PAUD time series.

Next, we.eraluatethe robustness of RCMs in simulatinggrsistence in the PAUD time series.
This helps to identifghe inconsistency betweeRCMs andmultiple observationsn simulating
spatial extent _and timings oflrought. Persistence in the hydrologic event results friima
presence of“memory in the system, such as prolonged duration of a drought event. A high
frequency oef.drought often results from low persistandde hydrologic systepwhich in turn
links to low autocorrelation in the drought time serigesth at spatial and temporal scale levels
(Tallaksen and Stahl, 2014). Hence, we devel@vealitocorrelation function (ACF; Figureb)l
[INSERT EIGURE 5 HERE] for the PAUD time series up to 1 year lags (1, 2, ..., 12
months) for.each of the nine regiofifie dop in the ACE at lag6 isaninherent property of the
databecauseth&PI time seriess computed at -Bnonth accumulation running window.The
ACF plots“showa declining autocorrelation pattern with increasing time ,ldgg the nature
differs regionay and amongnultiple datasetsThe temporal variability of annual PAUD time
series shows higfrequency variability characterized bylow autocorrelation (i.e., less
persistencepver the West On the other hand, we observe relativétw-frequencyvariability
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consequently high persistence in drought apgar the Southwest and WWNorth Central
regions respectivelyThis impliesthe likelihood of hydrological droughts ithese regiongOur
finding is consistent witlthe earlier study orthe Southwest drought (Cayan et al., 2010). The
early 2f' century drought over Southwest startddring 2000 with exceptionally warm
temperature.anbw precipitation (36‘ percentile or below) oveaheinterior Pacific coast, which
again spread_over Colorad Utah, Arizona and Southern Mea ly 2002, with monthly
precipitationpercentilesdropped to 28 percentile or belowCayan et al., 2010Further, our
analysis inthepreviousfew paragraphsuggest durind980-2003 Southwest i€haracterized by
lowed average droughfrequerty as compared to the other regiombis implies evidence of
spatially (.e.,drought affected area) and temporailg.(longer durationpersistehhydrological
droughtsover the Southwest. Except, Soutlest, and WesNorth Central regions, the regional

ACFsarewell simulatedby the RCMs and their multhodel ensembles

Robustness.of GCM Forced NARCCAP RCMsin Simulating Regional Drought Statistics

In this section, we evaluate robustness of NARCCAP RCMs driverGCM boundary
conditions In Simulating statistical properties of droughts that are temporallgeindent as
GCMs do net,ontain the same sequence of semface temperatur€SST) variability and
associated,signals at same temporal phasintpadsin theobservationsin this category, we
examine,frequency and persistenes the statistical metric¥he time slice for comparison is
from 1971=1999, the span of maximum GCoded NARCCAP data availability.

e Simulation of Drought Frequency: 1971-1999

We iderifiedsthe meteorological drought episodes from historical SPI time series and compare
the regional drought frequenay observations anth GCM forcedNARCCAP RCMs (Figure

16) [INSERT RIGURE B HERE]. We calculatethe number of drought events and their
durations at each grid amuesentspatialdistibution of drought frequencior the nine regios

Figure "B, shows discrepancy amorntlpe observations in simulatinghe regional drought
frequency. Both CRU TS3.22 and UDel v.3.01 underestimate drought frequency as compared to
the GPCC v.6. The disparity between GPCC v.6 and CRU TShagisets is clearly due the
markedly different (high) precipitation value simulated ®RU TS3.22 dataset (Figure 2)

Further,thediscrepancyn UDel v.3.01datarelative to the other two datasets is attributethéo
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differencesin interpolationmethodologies useith the dataetas discussed eat. The average
(median observed drought frequency is highest otlee West andthe Northeast regions,
whereas least over the Southwest. The {otenparison of individuabbservational datasets
reveals substantial numerical differences in simulating drought frequency; hoteveverall

pattern is_identical acrosall datasets.The MME-median GCM-RCM pair overestimate
observed “drought frequency over most of the regions; however, underestimates drought
frequencyoverthe Northeast andhe Southeastelative to GPCC data (Figuré)l Likewise in

most of theregions individual NARCCAP members overestimate the observed drought

frequency.

e Simulation of Drought Persistence
The persistence ithe SPI time series is analyzesing the Hurst index.Figure 17[INSERT
FIGURE I7 HERE] compars the distribution of the Hurst index and the observed median
severity in,the three observational datasets. Figutesllows wide variations amonthe
observations“in simulating region&PI persistence. In generdJDel v.3.01 followed by CRU
TS322 overestimate regional distribution of Hurst index in all regionslative to GPCC v.6
data.ln Northeast and Southwest, UDel v. 3.01 overestigmterage drought severjtywhereas
underestimates in the West relatteeother two datasets. While comparihg relation between
persistence in SPI time series and average drought seweetyind the Southwest region is
characterized byhe high SPI persistencwith high median severity, indicating evidence of
hydrologi@ldroughtin this regionIn contrast, although West is characterized by high values of
Hurst indexinsSPI time serigsthe average severity is relatively less as compared to the other
regions.The persistence in SPI time sere®&rthe Southeasappeardo be least using GPCC v.6
data. Barring few exceptions (such as, betwhegears2005-2007 and 1986 — 1987), in general
drought persistenda the Southeast is relatively rare as compared to the other regions of the US
as showrpreviously (Mo and Schemm, 2008a and 2008b; Ford and Labosier, 2Badher,
average severity of drought over Northeast appears tosbesdeereand characterized bipw
values of persistence in the SPI time series.

We compare individual GCM driven NARCCAP nadgl and their mukimodel ensembles in

simulating regional SPI persistence with respect teference observationsusing pattern
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correlation analysisFigure B [INSERT FIGURE B HERE] showsa heat map of model
performance against GPCC vFattern correlation analysis suggeasigti-model ensembles do
not concur well withthe observationsn simulating regional Hurst indeXAmong individual
models,CRCM-CCSM and WRFGCGCM3 over Easinorth Centrgl CRCM-CGCM3, RCM3
CGCM3 and, ECPELFDL over Saotheast, andHRM3-GFDL and HRM3HadCM3 over
Northeastshow high correlatiorvalue (Spearman’s p > 0.6). Over Westspatial patterns of
many modelsnparticular CCSM group (CRCMCSM, MM5CCSM, and WRFGCCSM) are

not in phase'with observéturst index

DISCUSSIONS
We evaluate robustnes§ NARCCAP in two phases: Phase | NARCCAP simulations driven by
NCEP boundary conditions compares individualugitt events and associated properties with
observations while the Phase Il simulations forogd@&CM boundary conditions test only those
statistical metrics of drought that are temporally independent.

To assess how NCEP driven NARCCAP RCMs able to steulagional SPI statistics, we
compare thespatial pattern between models and tieéerenceobservation using Taylor
diagrams.Consistent with previous studies (Arritt, 2008; Bukovsky et al. 2013),results
suggestspatial pattern correlation of models are high otrer West and correlation value
graduallydecreases as we move from westdalseast The deterioration of model performance
from the west (inflow boundary) towards east (outflow boundasyjue to the incorporation of
large-scale information in the model solution at lateral bounddAestt, 2008).As pointed by
Arritt (2008), the deterioration of model performance with distance from the inflow boundary
has improval.to' some extent in the models thatlide timevariant largescale atmospheric
states in the“model solution, such as inclusion of spectral nudging. In this contextidwe fi
CRCM and“ECP2 the two RCMs that include speatiadiging perform reasonably well in
simulating“regional SPI statisti@s compared tahe other RCMs Theresults ofthe regional
trend analas suggestMME medianRCM simulates regional trends satisfactorily relative to
observations; howeveit fails to simulate widespread significant drying oube West and
Southwest. Mst of the RCMdail to simulate drying trend ovéine Southwest, which appears to
be a problem with downscaled simulation for the red@ominguezet al, 2012; Wanget al,
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2009) due to its complex terrain. The CRCdhd RCM3 exhibit excessive wetnesgr the
eastern domajrwhereas WRFG shovan overall drying. However, the two RCMs, CRCM and
WRFG able to reproduce sigr drying (significant) trend over the Southwest. This is because
these two_models able to developsitore lowlevel monsoon flow over Southwest unlike other
RCMs as noted ia previous study (Bukovsky et al., 2013). haotherhand, the excessive wet
trend inCRCM/overthe eastern domain is due to its greater moisture convergence at the near
surface”level"(Bukovsky et al., 2013). The overall drying trend/RFG is likely tre result of
weaker orographic lift simulated by the model leading to reduced predcipitater the domain
(Liang et @l., 2012). In agreemenith earlier findings (Cruz, 2014; Bukovsky et al., 2013) our
analysis suggesensemble median NARCCAP RCM forcetth GCM boundary conditiontil

to simulate“signature dflAM satisfactorily.One hypothesis that may be examined by future
studies is that'the smaller precipitation variability in NARCCAP RCMs during JJA and the
underestimation ofhe NAM summerprecipitation is related to RCM warm season convection

initiation.

On evaluatingsmaximum drought severitsingpattern correlation analysige find wide spatial
variationssamonghe models. The spatial pattern of maximum observed drought properties
(severity.and duration) show a sharp gradient stretching tinerS8outhwest towards Easbrth
Central regions. In particulanone of the models forced with NCEP boundary conditions
simulates this spatial pattern satisfactorily. Some of the models overestimate danighb few
specific regions. For example, HRM3 and WRFG overestimate drought severity atidndura
over Southeast and in the portion of Northeast and Central regions respectively. Tepadscr

in simulating regional extremes motivates us to investigate further imden behavior of
drought propertiess well simulated by the models. Therefore arealyzeaveraged (represented

by median.as.this measure is robust again$iemljtseverity versus absolute model bias for each
regionusing,scatter plot. A statistically significant positive relationship exists between severity
versus model bias. This implies with larger severity, the model skillggnawse. Specifically,

with larger‘severity, the uncertainty in model projedigrows higher. The worst plausible case

is even higher because the upper bound of the uncertainty is larger for extreme dreadinis

adaptation hard because of larger variability.
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Observed and NCEP driven NARCCAP simulated mualbdel ensembles of PAUD time series
show large spatiotemporal variability. NARCCA#bdek overestimate PAUD time series in the
West in most of the yearwhereas underestimate in Northe&iutheast, Southest and West
north Central regions in some of the years. Further, to investigatbehavior of spatial
persistencessimulated by the NARCCAP RCMs, we analb@Z€& plots of observations and
models upto_l-year time lag. The ACF plots of observation atet#ht lags show evidence of
highfrequency“variability in PAUD time series ovére West and relatively low ovethe
Southwest and"Wesltorth Central regions respectively. The lequency variability in PAUD
time series corresponds to high persistencthénsystem, which in turn can be linkedthe
likelihood ef hydrological droughts in these regions (Southwest and-Wdeist Central). The re
analysis based NARCCAP RCMs fail to simulate high persistendbkeiPAUD time series
satisfactorily In'a modeling framework, spatiotemporal continuity of drought not only depend on
the model ability to reproduce mean precipitation througttbatannual cycle, but alson the
variability ‘ef precipitation to maintain precipitation deficit over a sustained pericalath of
agreementramong different models in simulating drouightisie to different parameterizations
involve in“modeling framework and persistencethie hydrological system is not adequately
addressedby. the models (Tallaksen and Stahl, 2014; Wamgal, 2009; Blenkinshop and
Fowler, 2007).

In phase ll assessment, we evaluate robustness of thef@Cddl NARCCAP ensembles. The
assessments@includmalysis of regional drought frequency and persistencéanSPI time
series. Overall'models overestim#be regionaldrought frequency. Discrepey in simulating
regional drought properties, particularly the severe events, are related to the convective
parameterization schesyavhich is not properly resolved at fine scale RCM grid cells as shown

in many studies (Fowler and Ekstrom, 2009; Tripathi and Dominguez, 2013). This in turn can be
linked to the failure of RCMs to simulate persistgniow regional precipitation (Blenkinshop

and Fowler2007)

The regional trend patterns in observed SPI time series show statistically sigrdfigisugt

trends,especially ovethe West and Southwest, which further motivates the analysis of drought
persistence. The persistencethe time series often leads to underestimation of variance and,
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subsequently overestimation of the statistical significance of trgtalmed and Ramachandra
Rao, 1998; Koutsoyiannis, 2003). Our analysis sugddME medianGCM-RCM pair does not
concur well with observations in simulating regional Hurst ind@mxe plausible reason for the
inability of RCMsto simulak drought persistenas thatclimatic oscilations may notalways be
well simulated. byclimate models. This opens up possibilés for future research irmodel
improvementspoth GCMs and RCMs.

One of the"potential caveats ofir analysisis the relatively short record (25 to 29 years of
monthly time series data) to characterize sygeme nature of drought persistence. Although few
studies(Tallaksen and Stahl, 2014; Waagal, 2009)have attempted to check performance of
land surface models to capture hydrological droughts over the CONUS and Europe, they did not
consider temporal saab properties and focused time autoregressive nature of the associated
time series. Our study analyses temporal scaling behavior of the meteotaliogigght index

and its spatial coverage in RCM simulated climate models and compare themrmuitifiie
observationgoeycheckthe credibility of the climate models to simulate temporal and spatial

persistence.

CONCLUSIONS

Precise projectiaof regional drought propertieseessential to mitigate the impact of drougyht

on water=supply system (Shiau and Shen, 2001). Althcaudimited number of studies
(Blenkinsagp and Fowler, 2007; Sheffield et al., 20adyeattempte to evaluate robustness of
highresolution climate models in the context of meteorological dreughe potential of
dynamically downscaled NARCCAP models are maty exploredyet (Kerr, 2013). The
dynamically..downscaled climate variables are assumed to be physically more consistent as
compared~to“their statistically downscaled counterp@raprise, 2008). However, the value
added bythe'RCMsiis still uncertain(Kerr, 2013; Racherla et al., 201@ye to propagation of
systematic biases from coarser resolution global models to regional nGaes and Mearns,
1991) Therefore, it is important to know how well these climate models able to stnaintatght
properties consistemtith observations and offer predictive insights for drought. Hence, to bridge
the existing gap in current understanding of NARCCAP regional climate models ioritextc

of drought, we evaluat¢he robustness of NARCCAP RCMs in simulating meteorological
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droughtsover the CONUSagainst multiple observational dataset#e analyzemeteorological

drought as it oftertranslats into potentially damaging other drought categories (Wilhite et al.

2014).Meteorological drought is quantified usitige SP1 (SP46) dueits multi-scalar nature and

its ability to capture seasonality, as opposed to the PDSI and soil moisseck ibdices. Our

primary and.secondary findings are as follows:

Robustness=analysis of Phase | NARCCAP simulati¢h880-2003) versusmultiple

observations yields following set of insights:

1.

In genéeral multi-model median NARCCAP RCMoutperforms individual modelf
simulating regionaldrought statistics,such asmedian SPI, associatedtrends, the
maximum droughpropertiesand mean PAUD. However, few regional exceptierist
where=extremes are over/underestimated by the models. For example, models fail to
simulate"widespread drying trend over the Southwestraidest.

Among individual models, the RCMs with spectral nudging technjghe<CRCM and
the ECPZ simulate regional SPI time series satisfactorily. Fyresnotethat theHRM3
andthe RCM3 are in good agreement with observatitmsimulate regional maximum
droughtproperties

A statistically significant positive correlation betwettt® model bias andhe observed
drought severity indicates with larger severity, the model skill gnarse. This implies
with larger severity, the uncertainty in model projectiazrow higher. Theworst
plausible case is even higher because the upper bound of uncertainty is largenast the
severe cases, leading to adaptation difficult because of larger variability.
Ovenll=MME median NARCCAPensembls underestimate median drought frequency
withnthesexception of the Southwesh Southwest, all models including their multi
model"eénsembles overestimate observed drought frequency.

Over the Southwest, the overestimation of drought frequency by the model ensembles
concurrent withthe inability to capture widespread drying trend sugg&@Ms may
generate more frequent meteorological droughts compared to obseratiansunable

to capture the intensityf the events.

The regional ACF plots suggesgersistent droughktoverthe Southwest and Westorth
Central isunderestimatedy the RCMs In addition, none of the modekimulates

widespread drying trend over the Southwest.

This article is protected by copyright. All rights reserved



Robustness analysis of Phase II NARCCAP ROMssus observations suggests following

insights:

1. Individual NARCCAP RCMs and their multhodel ensemble overestimatee regional
drought frequency over most of the regions.

2. Multi-moedel ensembles do not concur well with observations in simulating regional
Hurstiindex; however, few individual models, ®xamplesmodels with CGCM3 as the
boundary conditions perforreasonably well

Analysis of observational data across multiple sources, suggests following insights:

1. Differences exist among three datasets for simulating annual average precipitation: CRU TS
3.22 showdhe tendency towards wetter trend and underestimates variance especially over
the Southwest.

2. Both CRU_TS 3.22 and GPCC v.6 are in good agreement with each other in simulating
regionaltrends in SPI. In contrabtDel v.3.01 is relatively noisier and overestimates drying
trend overtthe Eastnorth central anthe Central regions.

3. Simulationof regional drought during 197999 shows both CRUS 3.22and UDel
v.3.01dataset underestimate drought frequency as compared to the GEBCOnthe other
hand, theagreement between CRIE3.22and GPCCv.6 data ardound to be highduring
1980-2003n simulatingthe regional drought frequency.

4. UDel v. 3.01 followed by CRU TS 3.2@verestimate regional distribution othe Hurst
Indexsasseompared tbe GPCCv.6 dataset

5. Analysis of drought persistence in PAUD time series revidaSouthwest anthe West
north Central regions have higher drought persistence, whereas persistepsis ahtie
SPI _time_series(using HurstindeX) shows theSoutheast is characterized by least
persistence.

Analysis of SPI'sensitivity across multiple time scasé®ws following insights

1. Distributions of spatial cross correlations over different regions show in gederaght
indices tend tobe closer and less uncertain at smaller time scales, whereas spatial
variability increases witltheincrease in accumulation time scales. Further median-cross
correlation over the Southwest is least and highest ovétditawest.

2. Regional distributions ofveighted average severity show increase in drought severity

with the increase in the accumulation time scales, whereas opposite arerbted for
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the spatial distribution of drought frequencyhe highest average drought severity is
found overthe Midwest (Eastnorth Centralat 3 and 12months’ time scalesind alsan
the Westnorth central at -6and 9months’ time scales. At t&onth accumulation time
scale, Northeasis characterized byhe highest average drought frequency with least
median, seerity.
Examination_ofthe added value of ensemble median G&Wced NARCCAP RCMs against
their host GCM shows following insights:

1. Precipitation pattern simulated blye RCMs shows topographically induced fiseale
regional features and their variabég, such as regional precipitation patterns aer
Southwest, Westorth Central anthe Northwest regions.

2. Analysis of mean annual precipitation in both datasets sH@M produceslarger
precipitation oveithe Pacific Northwest and Northeast as comparethéir host GCM.
Analysis_of seasonal precipitation over different-sedpons shows, except JJA, in all
seasongsvariability of RCMs are larger as compared to their host GCM.

3. NeithersNARCCAP nor their host@M able to simulate signals ¢fie North American

Monsooeneffectivelyandunderestimate JJA precipitation ovee Southwest.

Under norstationary climate condition, a credible projection of drought at fine scaddutien

is crucial for.early warningpnitigation and forming adaptation strateg{&uncunetal, 2015)
Although gridded precipitation and temperature data are routinely available aegokitions in
observations=and climate models, the higher resolution drought indices have limitabiktyai
through operationadystems. Irthe US, specifically many statdack indicator data at a spatial
and temporal scales needed for effective monitoring (Fon&daie 2014). Furtheruncertainty

in drought. quantifications and associated projectstesn froma vast array of datasetsom
multiple .sourcesoften limit our ability to frame appropriatanitigation strategie¢Bishop and
Beier, 2013)The difference in performance betweer thodels anthe observationgprimarily
arisesduerto-different initial conditions, structural dissimilarity, parameterization schemes and
the limited skils of theregional climate model® simulatelarge scaleatmospherigattern. To
provide betterregional assessmémé modeling community should continuously evallR@M
output before it is used by the stakeholders for planning purposes. We hope the anklysis wi
assist modelers to identify model deficiencies and further improve modelrparfoe, which

will be helpful in providing credible drought projections. A properocdination between
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NARCCAP modelers and stakeholder community is needed to improve paraateteriz
schemes of the models, so that model able to m@apiydrologically relevant metrics (such as,
long range persistence) useful for end user applicabatedriven methods such as enhanced
statistical downscaling schemes may help to achieve this goal.
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TABLE 1. Details ofRCM models used in this study

Model Acronym RCM with Institution/ Model Origin and reference Boundary GCM(s)
€RCM Canadian RCMCaya and Laprise, 1999) CCSM, CGCM3
ECP2 Scripps Experimental Climate Prediction Center Regit GFDL

Spectral Mode(Juang et al., 1997)
HRM3 Third-generation Hadley Center RCM, (Jones t24103) HADCM3, GFDL

MM5I Fifth-generation Pennsylvania State UniversityNational CCSM
Center for Atmospheric Research Mesoscale Mdéiell
et al., 1994) run by low&tate University

RCM3 Regional Climate Model version 3, (Giorgi et al., 1993a, GFDL, CGCM3
1993b), run by UC Santa Cruz

WRFG Weather Research and Forecasting Model, run by P« CCSM, CGCM3
Northwest National Laboratoifskamarock et al., 2005)
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y- axis: Frequency of Drought

jawra_12374-15-0020_f13.pdf

Central East-north Central Northeast
Br——mmv—-vrr————— a5 (—r——————r————— — —— —— ———— B r————————
30} 1 30} - -
e T T o+ = T 25'ET| T o e O T T T 2517 E:l - 7 - o T B
obt ¢ o0 ks G FOT 4 f ow v o3l a4l R CoT T | o0l i e
Hanbhoppnesgl ofipepTagorPPH SHYagRodgEPEH
o) .~ L1 *{ 10p ¢ - “{ 10t* T -
5 {1 s} i 5¢
Q%C}i,ﬁze—&@&;gﬁ%&&% @2‘\@@'0%000{)@\ Dé’icﬁi@&\@@ 1@0@ i\é‘v’b QC’Q\*;Q@} QQ-C"@\ Q&’é“ ﬁo‘% QQ-@*@};'@@;@&OQ};QQOOQQ}
Northwest Southeast Southwest
35 - T T 35— T T 35 T
30} {1 3ot {1 3o}
25} - - - = T . 25'T _ o T A 257 77 - - T w o T
Wl b L ¢ T o3 b v % 34 TH sali T o S R S IS I T ! S Coate T 7 i opke F o 0]
f8uHooenatan WnpgYoifagens YHETeTaanBgg
oy L + = * 1 L * SR B 1) S R A O B (o] * S
5 9 o 5 L o 5 5
Qq_c}i ;321,;2,@%@"-:9@;@0@ "g@i\@o@g@o ' Oq_o@‘ Q’:g,éb \““@%’ﬁ & \@;} \3\02} TS Q_oic?“’@@ri&\&’;o@;qge @i&l ’b+0@‘3égo°\>0“
South West-north Central West
35 —r T v T v ¥ T T v T - T 35 T = * o T T T T T T = T 35 T < + v T T -
30t { 3o} { 30} _ r
25'T L T T T o e W T . 25'? o T R SR R 25k T o T 0 ' T T
o0 | m— T4 oF 1 e T ml { 3. % L E 1 o e ) gl ' Fod s E i
“gp000805000d *WoodPoaoenng 2pdodenfgelin
i & Lob s L L3 E e qgls =t d L s d by gl R LT &AL sy
5 3 o 5 L o 5 5
«é\fbfbco‘bo 4}%0 b+\) é“‘l/ o}fb@-@bJrocJe}
éﬁ%’iﬁgl:& eﬁ:“ T \ﬁvb\\j\ eﬁxb}ﬁ‘lgﬁt Aﬁ rights @Sek&'edg“ *@\k\ \&.\$ \3\\\‘@@0@@@ Q \59 & Q«C’Q ¢\1\ & @\&\w\\@e@@% OQ‘C'?O N,

X- axis: Models



y- axis: PAUD (%)

| , Centyal
100
Zﬁﬁ ﬁ; : °B
25@ B E‘ !!iﬁ E Eﬁi Jo4

0
19801983 1986 19891992 1995 1998 2001

NW
100 | J I | ﬁ
75t . : ' ®
50 | j ;g - 'g
st gdledl] ¢ il B
| T 4 : g
0 =
1980 1983 1986 1989 1992 1995 1998 2001
South
100 (

)
75t ot 1
o X

== |

100 |

25gﬁia§!.gli,§iig.nigﬂ A8

0
19801983 1986 1989 1992 1995 1998 2001

jawra_12374€§é)020_f14.pdf

100 | | | xl

751, E

1980 1983 1986 1989 1992 1995 1998 2001
SE

22Eéli-égé @ﬁégﬁaéééﬁigﬁiﬁ

757

0
1980 1983 1986 1989 1992 1995 1998 2001
WNC

25la,iﬁgéﬂigaﬁaéa;iaEEEE;

o a3 '

il GE E

0
1980 1983 1986 1989 1992 1995 1998 2001
X- axis: Years

NE

100

T

AT
e

B

m‘z:r

b

-

19801983 1986 19891992 1 995 1998 2001

SW
100 | ’
75 | : : :
50ﬁ g; 5 ;
i ﬁ E 7,
25' __-" + ! E ." !_:?‘
& s &+ i | , L
TG A R
1980 1983 1986 1989 1992 1995 1998 2001
West
100 | —
75 | x x .
50'7 B B 'g s irs 1
: 5

4

Qjﬁﬁ,;éLEauE E ﬁﬁ_j 8

19801983 1986 1989 1992 1995 1998 2001

This article is protected by copyrifht. 8PfihYsGesetvedMulti-model Minimum %

Multi-model Median -+

Multi-model Maximum ‘




Central

jawra_123ENI3-0020_f15.pdf

South

SW West WNC

2 4 6 8 10 12 2 4 6 8 10 12
This article is protected by copyright. All rights reserved- aXis: Lags (months)

— NCEP driven NARCCAP

Observed Multimodel Minimum Multimodel Median Multimodel Maximum




y- axis: Frequency of Drought
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